Class-9 Trigonometry Worksheet 3
1. From the below given figure, find the value of:
a) Sin A b) Cot A
c) Cos C d) Sin2A + Cos2A
2. If 3 Tan A = 4, then find the value of:
a) Cos A b) Cosec A
c) Sec A − Tan A d) Sec2A − 1⁄Cot2A
3. From the below given figure, if Sin α = 12⁄13 and Cos β = 3⁄5 then find the length of AD.
4. If Sin θ = 12⁄13 and θ is less than 90o, find the value of Cot θ + Tan θ.
5. If Tan θ = 5⁄12, find the value of Cos θ + Cosec θ.
6. If 5 Sin θ = 4, find the value of (1+Cosθ)⁄(1−Cosθ).
7. If 5 Tan θ = 12, find the value of (5Sinθ−3Cosθ)⁄(5Sinθ+2Cosθ).
8. If 5 Tan θ = 4, find the value of (5Sinθ−3Cosθ)⁄(5Sinθ+2Cosθ).
9. If 13 Cos A = 12 and angle A is acute, find the value of (5SinA−2CosA)⁄Tan A.
10. If 5 Cos θ − 12 Sin θ = 0, then find the value of (Sin θ + Cos θ)⁄(2 Cos θ − Sin θ).
11. In a right-angled triangle ABC, ∠A = 90o. If AB = 7 cm and BC − AC = 1 cm, then find:
a) Cosec C b) Cot B
12. In a right-angled triangle ABC, ∠B = 90o. If AB = 40 cm and AC + BC = 50 cm, then find:
a) Cos A b) Tan C
13. If 4 Sin θ = 3 Cos θ, then find:
a) Cot2 θ − Cosec2 θ
b) 4 Cos2 θ − 3 Sin2 θ + 2
14. Find the value of:
a) Sin2 60o + Cos2 30o
b) Sin 30o Cos 60o
c) Cosec2 60o − Tan2 30o
d) Sin2 60o + Cosec2 30o + Tan2 45o
15. Find the value of:
a) Sin 60o Cos 30o + Sin 30o Cos 60o
b) Cos 30o Cos 60o − Sin 30o Sin 60o
c) Cosec2 45o − Cot2 45o
d) 3 Cosec2 60o − 2 Cot2 30o + Sec2 45o
16. If θ = 15o then find the value of (Cos 3θ − 2 Cos 4θ)⁄(Sin 3θ + 2 Sin 4θ).
17. If p = 30o, then find the value of 4 Cos3 p − 3 Cos p.
18. If q = 30o, then find the value of 4 Cos q × Cos (60o − q) × Cos (60o + q).
19. Find the value of A:
a) Sin 3A = √3⁄2 b) 2 Sin 3A = 2
c) Tan 3A = 1 d) Not defined
20. Find the value of q:
a) 2 Sin 3q − 1 = 0
b) Sin (q + 10o) = 1⁄2
c) 2 Sec (3q − 15o) = 4
d) Sin2 q + Sin2 30o = 1
If you want to download the above worksheet, please click below link.
Trigonometry Worksheet-3Download the pdf
Answer Sheet
Trigonometry-AnswerDownload the pdf
Copyright © 2025 LetsPlayMaths.com. All Rights Reserved.
Email: feedback@letsplaymaths.com